Wednesday, November 30, 2022
HomeHealth & FitnessAcute gut inflammation reduces neural activity and spine maturity in hippocampus but...

Acute gut inflammation reduces neural activity and spine maturity in hippocampus but not basolateral amygdala

  • Neuendorf, R., Harding, A., Stello, N., Hanes, D. & Wahbeh, H. Depression and anxiety in patients with inflammatory bowel disease: A systematic review. J. Psychosom. Res. 87, 70–80 (2016).

    Google Scholar 

  • Barberio, B., Zamani, M., Black, C. J., Savarino, E. V. & Ford, A. C. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 6, 359–370 (2021).

    Google Scholar 

  • Marrie, R. A., Graff, L. A., Fisk, J. D., Patten, S. B. & Bernstein, C. N. The relationship between symptoms of depression and anxiety and disease activity in IBD over time. Inflamm. Bowel Dis. 27, 1285–1293 (2021).

    Google Scholar 

  • Matisz, C. & Gruber, A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci. Biobehav. Rev. https://doi.org/10.20944/preprints202009.0593.v1 (2021).

    Article 

    Google Scholar 

  • Gruber, A. J. & McDonald, R. J. Context, emotion, and the strategic pursuit of goals: Interactions among multiple brain systems controlling motivated behavior. Front. Behav. Neurosci. 6, 50 (2012).

    Google Scholar 

  • Bitzer-Quintero, O. K. & González-Burgos, I. Immune system in the brain: A modulatory role on dendritic spine morphophysiology?. Neural Plast. 2012, 348642 (2012).

    Google Scholar 

  • O’Connor, M. The Effects of Lipopolysaccharide on Dendritic Spine Density (Springer, 2018).

    Google Scholar 

  • Kondo, S., Kohsaka, S. & Okabe, S. Long-term changes of spine dynamics and microglia after transient peripheral immune response triggered by LPS in vivo. Mol. Brain 4, 27 (2011).

    CAS 

    Google Scholar 

  • Vyas, A., Jadhav, S. & Chattarji, S. Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143, 387–393 (2006).

    CAS 

    Google Scholar 

  • Colyn, L., Venzala, E., Marco, S., Perez-Otaño, I. & Tordera, R. M. Chronic social defeat stress induces sustained synaptic structural changes in the prefrontal cortex and amygdala. Behav. Brain Res. 373, 112079. https://doi.org/10.1016/j.bbr.2019.112079 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hill, M. N. et al. Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Mol. Psychiatry 18, 1125–1135 (2013).

    CAS 

    Google Scholar 

  • Leuner, B. & Shors, T. J. Stress, anxiety, and dendritic spines: What are the connections?. Neuroscience 251, 108–119 (2013).

    CAS 

    Google Scholar 

  • Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 15251–152514 (2014).

    Google Scholar 

  • Zonis, S. et al. Chronic intestinal inflammation alters hippocampal neurogenesis. J. Neuroinflammation 12, 65 (2015).

    Google Scholar 

  • Han, Y. et al. Cortical Inflammation is Increased in a DSS-induced colitis mouse model. Neurosci. Bull. 34, 1058–1066 (2018).

    CAS 

    Google Scholar 

  • Hassan, A. M. et al. Repeated predictable stress causes resilience against colitis-induced behavioral changes in mice. Front. Behav. Neurosci. 8, 386 (2014).

    Google Scholar 

  • Reichmann, F. et al. Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Sci. Rep. 5, 9970 (2015).

    CAS 

    Google Scholar 

  • Hilel, A. S. et al. Dextran sulphate of sodium-induced colitis in mice: Antihyperalgesic effects of ethanolic extract of Citrus reticulata and potential damage to the central nervous system. An. Acad. Bras. Cienc. 90, 3139–3145 (2018).

    CAS 

    Google Scholar 

  • Do, J. & Woo, J. From gut to brain: Alteration in inflammation markers in the brain of dextran sodium sulfate-induced colitis model mice. Clin. Psychopharmacol. Neurosci. 16, 422–433 (2018).

    CAS 

    Google Scholar 

  • Nyuyki, K. D., Cluny, N. L., Swain, M. G., Sharkey, K. A. & Pittman, Q. J. Altered brain excitability and increased anxiety in mice with experimental colitis: Consideration of hyperalgesia and sex differences. Front. Behav. Neurosci. 12, 58 (2018).

    Google Scholar 

  • Riazi, K. et al. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci. USA. 105, 17151–17156 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Garré, J. M., Silva, H. M., Lafaille, J. J. & Yang, G. CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat. Med. 23, 714–722 (2017).

    Google Scholar 

  • von Bohlen Und Halbach, O. & von Bohlen Und Halbach, V. BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res. 373, 729–741 (2018).

    Google Scholar 

  • Risher, W. C., Ustunkaya, T., Singh Alvarado, J. & Eroglu, C. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS ONE 9, e107591 (2014).

    ADS 

    Google Scholar 

  • Rusakov, D. A., Stewart, M. G. & Korogod, S. M. Branching of active dendritic spines as a mechanism for controlling synaptic efficacy. Neuroscience 75, 315–323 (1996).

    CAS 

    Google Scholar 

  • Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26, 360–368 (2003).

    CAS 

    Google Scholar 

  • Simon Wiegert, J. & Oertner, T. G. Long-term depression triggers the selective elimination of weakly integrated synapses. Proc. Natl. Acad. Sci. USA 110, E4510–E4519 (2013).

    Google Scholar 

  • Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

    CAS 

    Google Scholar 

  • Lau, T., Bigio, B., Zelli, D., McEwen, B. S. & Nasca, C. Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant. Mol. Psychiatry 22, 227–234 (2017).

    CAS 

    Google Scholar 

  • Matisz, C. E., Vicentini, F. A., Hirota, S. A., Sharkey, K. A. & Gruber, A. J. Behavioral adaptations in a relapsing mouse model of colitis. Physiol. Behav. 216, 112802 (2020).

    CAS 

    Google Scholar 

  • Matisz, C. E. et al. Suppression of colitis by adoptive transfer of helminth antigen-treated dendritic cells requires interleukin-4 receptor-α signaling. Sci. Rep. 7, 40631 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Gibb, R. & Kolb, B. A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J. Neurosci. Methods 79, 1–4 (1998).

    CAS 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 

    Google Scholar 

  • Berg, S. et al. Ilastik: Interactive machine learning for (bio) image analysis. Nat. Methods 16(12), 1226–1232 (2019).

    CAS 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 

    Google Scholar 

  • von Bohlen und Halbach, O., Zacher, C., Gass, P. & Unsicker, K. Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J. Neurosci. Res. 83, 525–531 (2006).

    Google Scholar 

  • Santos, H. R. et al. Spine density and dendritic branching pattern of hippocampal CA1 pyramidal neurons in neonatal rats chronically exposed to the organophosphate paraoxon. Neurotoxicology 25, 481–494 (2004).

    CAS 

    Google Scholar 

  • Chakraborti, A., Allen, A., Allen, B., Rosi, S. & Fike, J. R. Cranial irradiation alters dendritic spine density and morphology in the hippocampus. PLoS ONE 7, e40844 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Haley, J. E., Schaible, E., Pavlidis, P., Murdock, A. & Madison, D. V. Basal and apical synapses of CA1 pyramidal cells employ different LTP induction mechanisms. Learn. Mem. 3, 289–295 (1996).

    CAS 

    Google Scholar 

  • Eijkelkamp, N. et al. Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: Spinal cord c-CFos expression and behavior. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G749–G757 (2007).

    CAS 

    Google Scholar 

  • Bercik, P. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23, 1132–1139 (2011).

    CAS 

    Google Scholar 

  • Painsipp, E., Herzog, H., Sperk, G. & Holzer, P. Sex-dependent control of murine emotional-affective behaviour in health and colitis by peptide YY and neuropeptide Y. Br. J. Pharmacol. 163, 1302–1314 (2011).

    CAS 

    Google Scholar 

  • Jain, P. et al. Behavioral and molecular processing of visceral pain in the brain of mice: impact of colitis and psychological stress. Front. Behav. Neurosci. 9, 177 (2015).

    Google Scholar 

  • Molendijk, M. L. & de Kloet, E. R. Coping with the forced swim stressor: Current state-of-the-art. Behav. Brain Res. 364, 1–10 (2019).

    Google Scholar 

  • Gadotti, V. M. et al. Neuroimmune responses mediate depression-related behaviors following acute colitis. Science 16, 12–21 (2019).

    CAS 

    Google Scholar 

  • Dempsey, E., Abautret-Daly, Á., Docherty, N. G., Medina, C. & Harkin, A. Persistent central inflammation and region specific cellular activation accompany depression- and anxiety-like behaviours during the resolution phase of experimental colitis. Brain Behav. Immun. 80, 616–632. https://doi.org/10.1016/j.bbi.2019.05.007 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lambert, K. G. et al. Explorations of coping strategies, learned persistence, and resilience in Long-Evans rats: innate versus acquired characteristics. Ann. N. Y. Acad. Sci. 1094, 319–324 (2006).

    ADS 

    Google Scholar 

  • Reichmann, F. et al. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice. Sci. Rep. 6, 28182 (2016).

    ADS 
    CAS 

    Google Scholar 

  • McEwen, B. S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122 (1999).

    CAS 

    Google Scholar 

  • Jacobson, L. & Sapolsky, R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev. 12, 118–134 (1991).

    CAS 

    Google Scholar 

  • Herman, J. P. & Cullinan, W. E. Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis. Trends Neurosci. 20, 78–84 (1997).

    CAS 

    Google Scholar 

  • Gareau, M. G. et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317 (2011).

    Google Scholar 

  • Reichmann, F., Painsipp, E. & Holzer, P. Environmental enrichment and gut inflammation modify stress-induced c-CFos expression in the mouse corticolimbic system. PLoS ONE 8, e54811 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Emge, J. R. et al. Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G989–G998 (2016).

    Google Scholar 

  • Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    CAS 

    Google Scholar 

  • Leem, Y.-H., Yoon, S.-S. & Jo, S. A. Imipramine ameliorates depressive symptoms by blocking differential alteration of dendritic spine structure in amygdala and prefrontal cortex of chronic stress-induced mice. Biomol. Ther. 28, 230–239 (2020).

    Google Scholar 

  • Qin, M., Xia, Z., Huang, T. & Smith, C. B. Effects of chronic immobilization stress on anxiety-like behavior and basolateral amygdala morphology in Fmr1 knockout mice. Neuroscience 194, 282–290 (2011).

    CAS 

    Google Scholar 

  • Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA 102, 9371–9376 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Smith, K. L. et al. Microglial cell hyper-ramification and neuronal dendritic spine loss in the hippocampus and medial prefrontal cortex in a mouse model of PTSD. Brain Behav. Immun. 80, 889–899 (2019).

    Google Scholar 

  • Chen, Y., Dubé, C. M., Rice, C. J. & Baram, T. Z. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J. Neurosci. 28, 2903–2911 (2008).

    CAS 

    Google Scholar 

  • Chen, F. et al. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus. Eur. Neuropsychopharmacol. 26, 234–245 (2016).

    CAS 

    Google Scholar 

  • Alonso, M., Medina, J. H. & Pozzo-Miller, L. ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn. Mem. 11, 172–178 (2004).

    Google Scholar 

  • Spruston, N. Pyramidal neurons: Dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008).

    CAS 

    Google Scholar 

  • Mihaljević, B., Larrañaga, P., Benavides-Piccione, R., DeFelipe, J. & Bielza, C. Comparing basal dendrite branches in human and mouse hippocampal CA1 pyramidal neurons with Bayesian networks. Sci. Rep. 10, 1–13 (2020).

    Google Scholar 

  • Fan, W. Group I metabotropic glutamate receptors modulate late phase long-term potentiation in hippocampal CA1 pyramidal neurons: Comparison of apical and basal dendrites. Neurosci. Lett. 553, 132–137 (2013).

    CAS 

    Google Scholar 

  • Navakkode, S., Sajikumar, S., Korte, M. & Soong, T. W. Dopamine induces LTP differentially in apical and basal dendrites through BDNF and voltage-dependent calcium channels. Learn. Mem. 19, 294–299 (2012).

    CAS 

    Google Scholar 

  • Leung, L. S. & Shen, B. N-methyl-d-aspartate receptor antagonists are less effective in blocking long-term potentiation at apical than basal dendrites in hippocampal CA1 of awake rats. Hippocampus 9, 617–630 (1999).

    CAS 

    Google Scholar 

  • Brzdak, P. et al. Synaptic potentiation at basal and apical dendrites of hippocampal pyramidal neurons involves activation of a distinct set of extracellular and intracellular molecular cues. Cereb. Cortex 29, 283–304 (2017).

    Google Scholar 

  • Ramachandran, B., Ahmed, S. & Dean, C. Long-term depression is differentially expressed in distinct lamina of hippocampal CA1 dendrites. Front. Cell. Neurosci. 9, 23 (2015).

    Google Scholar 

  • Rainnie, D. G., Asprodini, E. K. & Shinnick-Gallagher, P. Intracellular recordings from morphologically identified neurons of the basolateral amygdala. J. Neurophysiol. 69, 1350–1362 (1993).

    CAS 

    Google Scholar 

  • Meissner, A. et al. (2015). Tumor necrosis factor-α underlies loss of cortical dendritic spine density in a mouse model of congestive heart failure. J. Am. Heart Assoc. 4, 120

  • Zhang, K. et al. Imbalance between TNFα and progranulin contributes to memory impairment and anxiety in sleep-deprived mice. Sci. Rep. 7, 1–12 (2017).

    ADS 

    Google Scholar 

  • Orefice, L. L. et al. Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J. Neurosci. 33, 11618–11632 (2013).

    CAS 

    Google Scholar 

  • Maynard, K. R. et al. Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus. Brain Struct. Funct. 222, 3295–3307 (2017).

    CAS 

    Google Scholar 

  • Abdullah Anaman
    Abdullah Anamanhttps://aanaman.me
    I am a highly competent IT professional with a proven track record in designing websites, building apps etc. I have strong technical skills as well as excellent interpersonal skills, enabling me to interact with a wide range of clients.
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!

    Most Popular

    Recent Comments