Thursday, December 8, 2022
HomeScienceCollagen piezoelectricity in osteogenesis imperfecta and its role in intrafibrillar mineralization

Collagen piezoelectricity in osteogenesis imperfecta and its role in intrafibrillar mineralization

  • Boreham, C. A. G. & McKay, H. A. Physical activity in childhood and bone health. Br. J. Sports Med. 45, 877–879 (2011).

    PubMed 

    Google Scholar 

  • Nilsson, M., Ohlsson, C., Odén, A., Mellström, D. & Lorentzon, M. Increased physical activity is associated with enhanced development of peak bone mass in men: A five-year longitudinal study. J. Bone Miner. Res. 27, 1206–1214 (2012).

    PubMed 

    Google Scholar 

  • Martin, R. B., Burr, D. B., Sharkey, N. A. & Fyhrie, D. P. Skeletal tissue mechanics. (Springer, 2015).

  • Zimmermann, E. A. et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 4, 2634 (2013).

    PubMed 

    Google Scholar 

  • Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Orrego, S. et al. Bioinspired Materials with Self‐Adaptable Mechanical Properties. Adv. Mater. 1906970 https://doi.org/10.1002/adma.201906970 (2020).

  • Lausch, A. J., Quan, B. D., Miklas, J. W. & Sone, E. D. Extracellular matrix control of collagen mineralization in vitro. Adv. Funct. Mater. 23, 4906–4912 (2013).

    CAS 

    Google Scholar 

  • Stock, S. R. The mineral–collagen interface in bone. Calcif. Tissue Int. 97, 262–280 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y., Luo, D. & Wang, T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small 12, 4611–4632 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kinney, J. H., Habelitz, S., Marshall, S. J. & Marshall, G. W. The importance of intrafibrillar mineralization of collagen on the mechanical properties of Dentin. J. Dent. Res. 82, 957–961 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly. Adv. Mater. 23, 975–980 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Hierarchical intrafibrillar nanocarbonated apatite assembly improves the nanomechanics and cytocompatibility of mineralized collagen. Adv. Funct. Mater. 23, 1404–1411 (2013).

    CAS 

    Google Scholar 

  • Nudelman, F., Lausch, A. J., Sommerdijk, N. A. J. M. & Sone, E. D. In vitro models of collagen biomineralization. J. Struct. Biol. 183, 258–269 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Nair, A. K., Gautieri, A., Chang, S.-W. & Buehler, M. J. Molecular mechanics of mineralized collagen fibrils in bone. Nat. Commun. 4, 1–9 (2013).

    Google Scholar 

  • Xu, Y. et al. Intermolecular channels direct crystal orientation in mineralized collagen. Nat. Commun. 11, 5068 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Water-mediated structuring of bone apatite. Nat. Mater. 12, 1144–1153 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Lotsari, A., Rajasekharan, A. K., Halvarsson, M. & Andersson, M. Transformation of amorphous calcium phosphate to bone-like apatite. Nat. Commun. 9, 1–11 (2018).

    CAS 

    Google Scholar 

  • Kim, D., Lee, B., Thomopoulos, S. & Jun, Y.-S. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nat. Commun. 9, 962 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nair, M., Calahorra, Y., Kar-Narayan, S., Best, S. M. & Cameron, R. E. Self-assembly of collagen bundles and enhanced piezoelectricity induced by chemical crosslinking. Nanoscale 11, 15120–15130 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, P. et al. Resolving fine electromechanical structure of collagen fibrils via sequential excitation piezoresponse force microscopy. Nanotechnology 30, 205703 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bera, S. et al. Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nat. Commun. 12, 2634 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Otter, M., Goheen, S. & Williams, W. S. Streaming potentials in chemically modified bone. J. Orthop. Res. 6, 346–359 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Ahn, A. C. & Grodzinsky, A. J. Relevance of collagen piezoelectricity to “Wolff’s Law”: A critical review. Med. Eng. Phys. 31, 733–741 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, X.-G. et al. Hierarchical model for strain generalized streaming potential induced by the canalicular fluid flow of an osteon. Acta Mech. Sin. 31, 112–121 (2015).

    CAS 

    Google Scholar 

  • Boonrungsiman, S. et al. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc. Natl Acad. Sci. 109, 14170–14175 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao, K. et al. Complementarity and uncertainty in intrafibrillar mineralization of collagen. Adv. Funct. Mater. 26, 6858–6875 (2016).

    CAS 

    Google Scholar 

  • Chien, Y.-C. et al. Using biomimetic polymers in place of noncollagenous proteins to achieve functional remineralization of dentin tissues. ACS Biomater. Sci. Eng. 3, 3469–3479 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cölfen, H. A crystal-clear view. Nat. Mater. 9, 960–961 (2010).

    PubMed 

    Google Scholar 

  • Niu, L. et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat. Mater. 16, 370–378 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, Y.-X., Lin, W. & Rubin, C. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann. Biomed. Eng. 30, 693–702 (2002).

    PubMed 

    Google Scholar 

  • Kwon, J. & Cho, H. Piezoelectric heterogeneity in collagen Type I fibrils quantitatively characterized by piezoresponse force microscopy. ACS Biomater. Sci. Eng. 6, 6680–6689 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold. Adv. Mater. 28, 8740–8748 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Li, T. et al. Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling. Biomaterials 107, 15–22 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glorieux, F. H. et al. Osteogenesis Imperfecta Type VI: A form of brittle bone disease with a mineralization defect. J. Bone Miner. Res. 17, 30–38 (2002).

    PubMed 

    Google Scholar 

  • Fratzl-Zelman, N., Misof, B. M., Roschger, P. & Klaushofer, K. Classification of osteogenesis imperfecta. Wien. Med. Wochenschr. 165, 264–270 (2015).

    PubMed 

    Google Scholar 

  • Carriero, A., Enderli, T., Burtch, S. & Templet, J. Animal models of osteogenesis imperfecta: applications in clinical research. Orthop. Res. Rev. 8, 41–55 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Daley, E. et al. Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model. J. Bone Miner. Res. 25, 247–261 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Carriero, A. et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J. Bone Miner. Res. 29, 1392–1401 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Bart, Z. R., Hammond, M. A. & Wallace, J. M. Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta. Connect. Tissue Res. 55, 4–8 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Fratzl, P., Paris, O., Klaushofer, K. & Landis, W. J. Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. J. Clin. Invest. 97, 396–402 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niu, L. et al. Multiphase intrafibrillar mineralization of collagen. Angew. Chem. Int. Ed. 52, 5762–5766 (2013).

    CAS 

    Google Scholar 

  • Maghsoudi-Ganjeh, M., Samuel, J., Ahsan, A. S., Wang, X. & Zeng, X. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J. Mech. Behav. Biomed. Mater. 117, 104377 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jesse, S., Mirman, B. & Kalinin, S. V. Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor. Appl. Phys. Lett. 89, 022906 (2006).

    Google Scholar 

  • Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).

    Google Scholar 

  • Jesse, S. et al. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Baum, J. & Brodsky, B. Folding of peptide models of collagen and misfolding in disease. Curr. Opin. Struct. Biol. 9, 122–128 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Forlino, A., Cabral, W. A., Barnes, A. M. & Marini, J. C. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 7, 540–557 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bateman, J. F. et al. Effect of rapamycin on bone mass and strength in the α2(I)-G610C mouse model of osteogenesis imperfecta. J. Cell. Mol. Med. 23, 1735–1745 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Fratzl, P. et al. Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122, 119–122 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Orgel, J. P. R. O., Irving, T. C., Miller, A. & Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc. Natl Acad. Sci. 103, 9001–9005 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balooch, M., Habelitz, S., Kinney, J. H., Marshall, S. J. & Marshall, G. W. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J. Struct. Biol. 162, 404–410 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minary-Jolandan, M. & Yu, M.-F. Nanomechanical heterogeneity in the gap and overlap regions of Type I collagen fibrils with implications for bone heterogeneity. Biomacromolecules 10, 2565–2570 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Gisbert, V. G., Benaglia, S., Uhlig, M. R., Proksch, R. & Garcia, R. High-speed nanomechanical mapping of the early stages of collagen growth by bimodal force microscopy. ACS Nano 15, 1850–1857 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olszta, M. J. et al. Bone structure and formation: A new perspective. Mater. Sci. Eng. R. Rep. 58, 77–116 (2007).

    Google Scholar 

  • Pienkowski, D. & Pollack, S. R. The origin of stress-generated potentials in fluid-saturated bone. J. Orthop. Res. 1, 30–41 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • Oatley-Radcliffe, D. L., Aljohani, N., Williams, P. M. & Hilal, N. Chapter 18 – Electrokinetic Phenomena for Membrane Charge. In Membrane Characterization (eds. Hilal, N., Ismail, A. F., Matsuura, T. & Oatley-Radcliffe, D.) 405–422 (Elsevier, 2017). https://doi.org/10.1016/B978-0-444-63776-5.00018-8.

  • Bowen, W. R. & Clark, R. A. Electro-osmosis at microporous membranes and the determination of zeta-potential. J. Colloid Interface Sci. 97, 401–409 (1984).

    CAS 

    Google Scholar 

  • Tai, K., Dao, M., Suresh, S., Palazoglu, A. & Ortiz, C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454–462 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    CAS 

    Google Scholar 

  • Wu, X. & Zhu, Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 5, 527–532 (2017).

    CAS 

    Google Scholar 

  • Silver, F. H. & Landis, W. J. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen. Connect. Tissue Res. 52, 242–254 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Bassett, D. C., Marelli, B., Nazhat, S. N. & Barralet, J. E. Stabilization of amorphous calcium carbonate with nanofibrillar biopolymers. Adv. Funct. Mater. 22, 3460–3469 (2012).

    CAS 

    Google Scholar 

  • Tomoaia, G. & Pasca, R.-D. On the collagen mineralization. a review. Clujul Med. 88, 15–22 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Denning, D., Paukshto, M. V., Habelitz, S. & Rodriguez, B. J. Piezoelectric properties of aligned collagen membranes. J. Biomed. Mater. Res. B Appl. Biomater. 102, 284–292 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Denning, D. et al. Piezoelectric tensor of collagen fibrils determined at the nanoscale. ACS Biomater. Sci. Eng. 3, 929–935 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Minary-Jolandan, M. & Yu, M.-F. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 20, 085706 (2009).

    PubMed 

    Google Scholar 

  • Minary-Jolandan, M. & Yu, M.-F. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano 3, 1859–1863 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Eyre, D. R. & Wu, J.-J. Collagen Cross-Links. in Collagen: Primer in Structure, Processing and Assembly (eds. Brinckmann, J., Notbohm, H. & Müller, P. K.) 207–229 (Springer, 2005). https://doi.org/10.1007/b103828.

  • Robins, S. P. Biochemistry and functional significance of collagen cross-linking. Biochem. Soc. Trans. 35, 849–852 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Avery, N. C. & Bailey, A. J. Restraining Cross-Links Responsible for the Mechanical Properties of Collagen Fibers: Natural and Artificial. in Collagen 81–110 (Springer, Boston, MA, 2008). https://doi.org/10.1007/978-0-387-73906-9_4.

  • Fuchs, R. K. et al. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol. 27, 34–41 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Roschger, P., Paschalis, E. P., Fratzl, P. & Klaushofer, K. Bone mineralization density distribution in health and disease. Bone 42, 456–466 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Bala, Y., Farlay, D., Delmas, P. D., Meunier, P. J. & Boivin, G. Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone 46, 1204–1212 (2010).

    PubMed 

    Google Scholar 

  • Kalinin, S. V., Rar, A. & Jesse, S. A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2226–2252 (2006).

    PubMed 

    Google Scholar 

  • Fukada, E. & Yasuda, I. Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3, 117 (1964).

    CAS 

    Google Scholar 

  • Kim, S., Seol, D., Lu, X., Alexe, M. & Kim, Y. Electrostatic-free piezoresponse force microscopy. Sci. Rep. 7, 41657 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peter, F., Rudiger, A., Szot, K., Waser, R. & Reichenberg, B. Sample-tip interaction of piezoresponse force microscopy in ferroelectric nanostructures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2253–2260 (2006).

    PubMed 

    Google Scholar 

  • Balke, N. et al. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. Nanotechnology 27, 425707 (2016).

    PubMed 

    Google Scholar 

  • Abdullah Anaman
    Abdullah Anamanhttps://aanaman.me
    I am a highly competent IT professional with a proven track record in designing websites, building apps etc. I have strong technical skills as well as excellent interpersonal skills, enabling me to interact with a wide range of clients.
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here
    Captcha verification failed!
    CAPTCHA user score failed. Please contact us!

    Most Popular

    Recent Comments