Wednesday, February 8, 2023
HomeScienceStarlink Group 4-37 | Falcon 9 Block 5

Starlink Group 4-37 | Falcon 9 Block 5

Lift Off Time
December 17, 2022 – 21:32 UTC | 16:32 EST
Mission Name
Starlink Group 4-37; the 32nd launch to Starlink Shell 4
Launch Provider
(What rocket company launched it?)
SpaceX
Customer
(Who paid for this?)
SpaceX
Rocket
Falcon 9 Block 5, booster B1058-15; 97.84 day turnaround
Launch Location
Launch Complex 39A (LC-39A), Kennedy Space Center, Florida, USA
Payload mass
~16,600 kg (~36,600 lb) (54 x ~307 kg, plus dispenser)
Where did the satellites go?
Starlink Shell 4; 540 km circular low-Earth orbit (LEO); initial orbit: 335 x 232 km at 53.22 degrees
Did they attempt to recover the first stage?
Yes
Where did the first stage land?
~655 km downrange on Just Read the Instructions

Tug: Doug; Support: Doug

Did they attempt to recover the fairings?
The fairing halves were recovered from the water ~655 km downrange by Doug
Were these fairings new?
No
This was the:
– 1st 15th flight of a Falcon 9 Booster
– 200th orbital launch attempt for SpaceX
– 192nd Falcon 9 launch
– 128th Falcon 9 flight with a flight-proven booster
– 132nd re-flight of a booster
– 53rd re-flight of a booster in 2022
– 158th booster landing
– 84th consecutive landing (a record)
– 59th launch for SpaceX in 2022 (a record)
– 59th SpaceX launch from LC-39A
– 181st orbital launch attempt of 2022
Where to watch
Official Replay

How Did It All Go?

SpaceX’s Starlink Group 4-37 mission successfully launched 54 Starlink satellites atop a Falcon 9 rocket. The Falcon 9 lifted off from Launch Complex 39A (LC-39A), at the Kennedy Space Center, in Florida, United States. Starlink Group 4-37 marked the 65th operational Starlink mission, boosting the total number of Starlink satellites launched to 3,612, of which ~3,321 are still in orbit around the Earth. Starlink Group 4-37 was the 32nd launch to the fourth Starlink shell; roughly 35 launches will be required to fill Shell 4.

Starlink is SpaceX’s internet communication satellite constellation. The low-Earth orbit constellation delivers fast, low-latency internet service to locations where ground-based internet is unreliable, unavailable, or expensive. The first phase of the constellation consists of five orbital shells.

Starlink is currently available in certain regions, allowing anyone in approved regions to order or preorder. After 28 launches SpaceX achieved near-global coverage, but version 1 of the constellation will not be complete until all five shells are filled. Once Starlink versions 1 and 2 are complete, the venture is expected to profit $30-50 billion annually. This profit will largely finance SpaceX’s ambitious Starship program, as well as Mars Base Alpha.

Starlink satellites, satellite dispenser.
A stack of 60 Starlink V1.0 satellites prior to be encapsulated into Falcon 9’s payload fairing. (Credit: SpaceX)

Each Starlink V1.5 satellite has a compact design and a mass of 307 kg. SpaceX developed a flat-panel design, allowing them to fit as many satellites as possible into the Falcon 9’s 5.2 meter wide payload fairing. Due to this flat design, SpaceX is able to fit up to 60 Starlink satellites and the payload dispenser into the second stage, while still being able to recover the first stage. This is near the recoverable payload capacity of the Falcon 9 to LEO, around 16 tonnes. 

As small as each Starlink satellite is, each one is packed with high-tech communication and cost-saving technology. Each Starlink satellite is equipped with four phased array antennas, for high bandwidth and low-latency communication, and two parabolic antennas. The satellites also include a star tracker, which provides the satellite with attitude data, ensuring precision in broadband communication. 

Each Starlink V1.5 satellite is also equipped with an inter-satellite laser communication system. This allows each satellite to communicate directly with other satellites, not having to go through ground stations. This reduces the number of ground stations needed, allowing coverage of the entire Earth’s surface, including the poles.

The Starlink satellites are also equipped with an autonomous collision avoidance system, which utilizes the US Department of Defense (DOD) debris tracking database to autonomously avoid collisions with other spacecraft and space junk. 

To decrease costs, each satellite has a single solar panel, which simplifies the manufacturing process. To further cut costs, Starlink’s propulsion system, an ion thruster, uses krypton as fuel, instead of xenon. While the specific impulse (ISP) of krypton is significantly lower than xenon’s, it is far cheaper, which further decreases the satellite’s manufacturing cost.

Ion Power

Each Starlink satellite is equipped with the first Hall-effect krypton-powered ion thruster. This thruster is used for both ensuring the correct orbital position, as well as for orbit raising and orbit lowering. At the end of the satellite’s life, this thruster is used to deorbit the satellite.

A satellite constellation is a group of satellites that work in conjunction for a common purpose. Currently, SpaceX plans to form a network of 11,716 satellites; however, in 2019 SpaceX filed an application with the Federal Communication Commission (FCC) for permission to launch and operate an additional 30,000 satellites as part of phase 2 of Starlink. To put this number of satellites into perspective, this is roughly 20 times more satellites than were launched before 2019. 

Of the initial ~12,000 satellites, ~4,400 would operate on the Ku and Ka bands, with the other ~7,600 operating on the V-Band. 

Due to the vast number of Starlink satellites, many astronomers are concerned about their effect on the night sky. However, SpaceX is working with the astronomy community and implementing changes to the satellites to make them harder to see from the ground and less obtrusive to the night sky. SpaceX has changed how the satellites raise their orbits and, starting on Starlink V1.0 L9, added a sunshade to reduce light reflectivity. These changes have already significantly decreased the effect of Starlink on the night sky.

Inclination (°) Orbital Altitude (km) Number of Satellites
Shell 1 53.0 550 1,584
Shell 2 70.0 570 720
Shell 3 97.6 560 348
Shell 4 53.2 540 1,584
Shell 5 97.6 560 172
Orbital Shells

Shell 1

The first orbital shell of Starlink satellites consists of 1,584 satellites in a 53.0° 550 km low-Earth orbit. Shell 1 consists of 72 orbital planes, with 22 satellites in each plane. This shell is currently near complete, with occasional satellites being replaced. The first shell provides coverage between roughly 52° and -52° latitude (~80% of the Earth’s surface), and will not feature laser links until replacement satellites launch after 2021.

Shell 2

Starlink’s second shell will host 720 satellites in a 70° 570 km orbit. These satellites will significantly increase the coverage area, which will make the Starlink constellation cover around 94% of the globe. SpaceX will put 20 satellites in each of the 36 planes in the third shell. This shell is currently being filled, along with Shell 4.

Shell 3

Shell 3 will consist of 348 satellites in a 97.6° 560 km orbit. SpaceX deployed 10 laser link test satellites into this orbit on their Transporter-1 mission to test satellites in a polar orbit. SpaceX launched an additional three satellites to this shell on the Transporter-2 mission. On April 6, 2021, Gwynne Shotwell said that SpaceX will conduct regular polar Starlink launches in the summer, but this shell is now the lowest priority, and is expected to be the last filled. All satellites that will be deployed into this orbit will have inter-satellite laser link communication. Shell 3 will have six orbital planes with 58 satellites in each plane.

Shell 4

The fourth shell will consist of 1,584 satellites in a 540 km 53.2° LEO. This updated orbital configuration will slightly increase coverage area and will drastically increase the bandwidth of the constellation. This shell will also consist of 72 orbital planes with 22 satellites in each plane. This shell is currently being filled alongside Shell 2.

Shell 5

The final shell of Phase 1 of Starlink will host 172 satellites in another 97.6° 560 km low-Earth polar orbit. Shell 5 will also consist purely of satellites with laser communication links; however, unlike Shell 3, it will consist of four orbital planes with 43 satellites in each plane.

All of the Starlink Phase 2 shells will utilize Starlink v2.0 satellites.

Shell 6

The sixth orbital shell of Starlink satellites is permitted to consist of 2,493 satellites in a 42° 335.9 km LEO. This large number of satellites will decrease latency and increase bandwidth for lower latitudes.

Shell 7

The seventh Starlink shell permits SpaceX to deploy 2,478 satellites into a 48° 340.8 km low-Earth orbit. These satellites will further decrease latency and increase bandwidth for lower latitudes.

Shell 8

The final shell of Starlink Phase 2 allows SpaceX to deploy 2,547 satellites in a 53° 345.6 km orbit.

SpaceX has until March of 2024 to complete half of phase 1 and must fully complete Phase 1 by March of 2027. Phase 2 must be half complete by November of 2024, and be finished by November of 2027. Failure to do so could result in SpaceX losing its dedicated frequency band.

What Is Falcon 9 Block 5?

The Falcon 9 Block 5 is SpaceX’s partially reusable two-stage medium-lift launch vehicle. The vehicle consists of a reusable first stage, an expendable second stage, and, when in payload configuration, a pair of reusable fairing halves.

First Stage

The Falcon 9 first stage contains 9 Merlin 1D+ sea level engines. Each engine uses an open gas generator cycle and runs on RP-1 and liquid oxygen (LOx). Each engine produces 845 kN of thrust at sea level, with a specific impulse (ISP) of 285 seconds, and 934 kN in a vacuum with an ISP of 313 seconds. Due to the powerful nature of the engine, and the large amount of them, the Falcon 9 first stage is able to lose an engine right off the pad, or up to two later in flight, and be able to successfully place the payload into orbit.

The Merlin engines are ignited by triethylaluminum and triethylborane (TEA-TEB), which instantaneously burst into flames when mixed in the presence of oxygen. During static fire and launch the TEA-TEB is provided by the ground service equipment. However, as the Falcon 9 first stage is able to propulsively land, three of the Merlin engines (E1, E5, and E9) contain TEA-TEB canisters to relight for the boost back, reentry, and landing burns.

Second Stage

The Falcon 9 second stage is the only expendable part of the Falcon 9. It contains a singular MVacD engine that produces 992 kN of thrust and an ISP of 348 seconds. The second stage is capable of doing several burns, allowing the Falcon 9 to put payloads in several different orbits.

For missions with many burns and/or long coasts between burns, the second stage is able to be equipped with a mission extension package. When the second stage has this package it has a grey strip, which helps keep the RP-1 warm, an increased number of composite-overwrapped pressure vessels (COPVs) for pressurization control, and additional TEA-TEB.

falcon 9 block 5, launch
Falcon 9 Block 5 launching on the Starlink V1.0 L27 mission (Credit: SpaceX)

Falcon 9 Booster

The booster that supported the Starlink Group 4-31 was B1058-15–the first 15th flight of a Falcon 9 booster. Upon successful landing, this changed to B1058-16.

B1058’s missions Launch Date (UTC) Turnaround Time (Days)
SpX-DM2 May 05, 2020 – 19:22 N/A
ANASIS-II July 07, 2020 – 21:30 51.09
Starlink L12 October 06, 2020 – 11:29 77.58
CRS-21 December 06, 2020 – 16:17 61.20
Transporter-1 January 24, 2021 – 15:00 48.95
Starlink L20 March 11, 2021 – 08:13 45.72
Starlink L23 April 07, 2021 – 16:34 27.35
Starlink L26 May 15, 2021 – 22:56 38.27
Starlink Group 4-1 November 13, 2021 – 12:19 181.56
Transporter-3 January 13, 2022 – 15:25 61.13
Starlink Group 4-8 February 21, 2022 – 14:44 38.97
Starlink Group 4-17 May 06, 2022 – 09:42 73.79
Starlink Group 4-21 July 07, 2022 – 13:11 62.15
Starlink Group 4-2 & BlueWalker 3 September 11, 2022 – 01:20 65.51
Starlink Group 4-37 December 16, 2022 – 21:32 97.84

Following stage separation, the Falcon 9 conduct two burns. These burns softly touched down the booster on SpaceX’s autonomous spaceport drone ship Just Read the Instructions.

falcon 9 booster, landing, drone ship
Falcon 9 landing on Of Course I Still Love You after launching Bob and Doug (Credit: SpaceX)

Falcon 9 Fairings

The Falcon 9’s fairing consists of two dissimilar reusable halves. The first half (the half that faces away from the transport erector) is called the active half, and houses the pneumatics for the separation system. The other fairing half is called the passive half. As the name implies, this half plays a purely passive role in the fairing separation process, as it relies on the pneumatics from the active half.

Both fairing halves are equipped with cold gas thrusters and a parafoil which are used to softly touch down the fairing half in the ocean. SpaceX used to attempt to catch the fairing halves, however, at the end of 2020 this program was canceled due to safety risks and a low success rate. On Starlink Group 4-37, SpaceX recovered the fairing halves from the water with their recovery vessel Doug.

In 2021, SpaceX started flying a new version of the Falcon 9 fairing. The new “upgraded” version has vents only at the top of each fairing half, by the gap between the halves, whereas the old version had vents placed spread equidistantly around the base of the fairing. Moving the vents decreases the chance of water getting into the fairing, making the chance of a successful scoop significantly higher.

All times are approximate

HR/MIN/SEC EVENT
00:38:00 SpaceX Launch Director verifies go for propellant load
00:35:00 RP-1 (rocket grade kerosene) loading underway
00:35:00 1st stage LOX (liquid oxygen) loading underway
00:16:00 2nd stage LOX loading underway
00:07:00 Falcon 9 begins engine chill prior to launch
00:01:00 Command flight computer to begin final prelaunch checks
00:01:00 Propellant tank pressurization to flight pressure begins
00:00:45 SpaceX Launch Director verifies go for launch
00:00:03 Engine controller commands engine ignition sequence to start
00:00:00 Falcon 9 liftoff

Starlink Group 4-37 Launch, Landing, and Deployment

All Times Approximate

HR/MIN/SEC EVENT
00:01:12 Max Q (moment of peak mechanical stress on the rocket)
00:02:27 1st stage main engine cutoff (MECO)
00:02:31 1st and 2nd stages separate
00:02:38 2nd stage engine starts
00:02:42 Fairing deployment
00:06:47 1st stage entry burn start
00:07:06 1st stage entry burn complete
00:08:28 1st stage landing burn start
00:08:41 2nd stage engine cutoff (SECO-1)
00:08:49 1st stage landing
00:15:22 Starlink satellites deploy

Abdullah Anaman
Abdullah Anamanhttps://aanaman.me
I am a highly competent IT professional with a proven track record in designing websites, building apps etc. I have strong technical skills as well as excellent interpersonal skills, enabling me to interact with a wide range of clients.
RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here
Captcha verification failed!
CAPTCHA user score failed. Please contact us!

Most Popular

Recent Comments